Acceleration of the Z to E photoisomerization of penta-2,4-dieniminium by hydrogen out-of-plane motion: theoretical study on a model system of retinal protonated Schiff base.

نویسندگان

  • Masato Sumita
  • Mikhail N Ryazantsev
  • Kazuya Saito
چکیده

We report the result of comparison between two reaction coordinates [on the potential energy surface of the first excited state (S(1))] produced by CASSCF and these energies recalculated by MRMP2 in the Z to E photoisomerization of penta-2,4-dieniminium (PDI) as the minimal model of the retinal protonated Schiff base (RPSB). One coordinate is the S(1) state minimum-energy-path (MEP) in mass-weighted coordinates from the S(1) vertically excited point, where a strong hydrogen-out-of plane (HOOP) motion is not exhibited. The energy profile of the S(1) MEP at the MRMP2//CASSCF level shows a barrier for the rotation around the reactive C-C and hits the S(1)/S(0) degeneracy space where the central C-C-C-C dihedral angle is distorted by 65 degrees . The other coordinate is an S(1) coordinate obtained by the relaxed scan strategy. The relaxed coordinate along the central C-C-C-C dihedral angle, which we call the HOOP coordinate, shows strong HOOP motion. According to the MRMP2//CASSCF calculation, there is no barrier on the HOOP coordinate. Furthermore, the S(1) to S(0) transition may be possible without the large skeletal deformation by HOOP motion because the HOOP coordinate encounters the S(1)/S(0) degeneracy space where the central C-C-C-C dihedral angle is distorted by only 40 degrees . Consequently, if PDI is a suitable model molecule for the RPSB as often assumed, the 11-cis to all-trans photoisomerization is predicted to be accelerated by the HOOP motion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retinal shows its true colours: photoisomerization action spectra of mobility-selected isomers of retinal protonated Schiff base†

Retinal is one of Nature’s most important and widespread chromophores, exhibiting remarkable versatility in its function and spectral response, depending on its protein environment. Reliable spectroscopic and photochemical data for the isolated retinal molecule are essential for calibrating theoretical approaches that seek to model retinal’s behaviour in complex protein environments. However, d...

متن کامل

Retinal shows its true colours: photoisomerization action spectra of mobility-selected isomers of the retinal protonated Schiff base.

Retinal is one of Nature's most important and widespread chromophores, exhibiting remarkable versatility in its function and spectral response, depending on its protein environment. Reliable spectroscopic and photochemical data for the isolated retinal molecule are essential for calibrating theoretical approaches that seek to model retinal's behaviour in complex protein environments. However, d...

متن کامل

Study of Photoisomerization in Cis-Retinal as a Natural Photo Switch in Vision Using Density Functional Theory

In the present study, theoretical chemical reactivates Photo isomerization in Cis-Retinal as a Natural Photo switch in Vision. DFT hybrid functional, B3LYP and, post-HF method, were the theoretical methods applied utilizing G09 software. 6-31G+ (d,p) basis set employed for structural optimizations, and single point computations performed using B3LYP/6-31G+(d,p). The isomers cis molecule retinal...

متن کامل

Assessment of Density Functional Theory for Describing the Correlation Effects on the Ground and Excited State Potential Energy Surfaces of a Retinal Chromophore Model.

In the quest for a cost-effective level of theory able to describe a large portion of the ground and excited potential energy surfaces of large chromophores, promising approaches are rooted in various approximations to the exact density functional theory (DFT). In the present work, we investigate how generalized Kohn-Sham DFT (GKS-DFT), time-dependent DFT (TDDFT), and spin-restricted ensemble-D...

متن کامل

Study of Photoisomerization in Cis-Retinal as a Natural Photo Switch in Vision Using Density Functional Theory

In the present study, theoretical chemical reactivates Photo isomerization in Cis-Retinal as a Natural Photo switch in Vision. DFT hybrid functional, B3LYP and, post-HF method, were the theoretical methods applied utilizing G09 software. 6-31G+ (d,p) basis set employed for structural optimizations, and single point computations performed using B3LYP/6-31G+(d,p). The isomers cis molecule retinal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 11 30  شماره 

صفحات  -

تاریخ انتشار 2009